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a  b  s  t  r  a  c  t

When  ecological  models  are  used  to  guide  conservation  decisions,  these  models  should  be based  upon
substantial  data  and  should  be applied  at appropriate  spatial  scales.  Yet,  ecologists  are  usually  faced
with scarce  data  and  must  often  make  subjective  choices  about  scale.  To  handle  limited  data,  the  use of
expert  panels  to parameterize  models  has  become  common.  However,  few  studies  evaluate  the success
of expert  panels  in  improving  models.  In  this  study,  I  examine  a  recent  resistant  kernel  model  designed
to  prioritize  amphibian  breeding  habitat  for conservation.  I compare  the  predictive  ability  of  the model
as originally  parameterized  by  an  expert  panel  to the  predictive  ability  of simpler  models.  I optimize
parameter  values  for spatial  scale  and  landscape  resistance  using  896  ponds  from  5  studies  of  spotted
salamanders  (Ambystoma  maculatum)  and  wood  frogs  (Lithobates  sylvaticus)  in  Massachusetts  and  Rhode
Island.  In  predicting  amphibian  distributions,  models  examined  in  this  study  that  relied  upon expert-
derived  resistance  values  performed  worse  than  null  models  with  uninformative  resistance  values.  The
failure  of  the  resistant  kernel  model  offers  support  for the  use  of  simple  models  in the  face of  complex
ecological  problems.  The  best  scale  for measuring  upland  habitat  in  these  models  was in  the  range  of
1000–3000  m,  an  order  of  magnitude  larger  than  the  salamander  migration  scale  previously  proposed
for  wetland  buffer  zones.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A  major challenge in ecology is modeling complex problems
with scant data. To deal with data scarcity, ecologists may aim
for simpler models, develop new statistical frameworks (e.g.
Ovaskainen and Soininen, 2011), or elicit expert opinion (Kuhnert
et al., 2010). Expert opinion is increasingly used to parameterize
models in the absence of data and as Bayesian priors to supplement
sparse data (Yamada et al., 2003; Martin et al., 2005; Denham and
Mengersen, 2007; Griffiths et al., 2007; Mac  Nally, 2007; O’Neill
et al., 2008; Low Choy et al., 2009; O’Leary et al., 2009; Murray
et al., 2009; James et al., 2010). Yet, when lacking data, expert opin-
ion does not necessarily offer an improvement (Cox, 2000; Pearce
et al., 2001; Seoane et al., 2005). While this approach is growing in
popularity, few studies in ecology have rigorously tested the suc-
cess of expert panels in assigning meaningful values. If, when, and
how expert opinion should be used in ecology remains an open
debate.

In this study, I examine two types of parameters that are often
assigned based upon expert opinion or scant data. One type of
parameter includes those that match land cover classes with some
aspect of habitat quality. When predicting species distributions
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across diverse landscapes, there is often little choice but to rely
upon expert advice about what represents suitable habitat and
what represents barriers to movement (Johnson and Gillingham,
2004). The second parameter type I examine is that of spatial scale.
Selecting an appropriate spatial scale is a core modeling decision,
but there is seldom much data on which to base this choice (Holland
et al., 2004).

Identifying appropriate spatial scales is a fundamental problem
in both ecology and conservation biology (Levin, 1992; Noss, 1992;
Laurance, 2000). For conservation, it is important for the scales at
which conservation initiatives can be implemented to match the
scales at which organisms can respond (Warren et al., 2008). In
constructing models, it is well understood that input data must
be sampled with the appropriate extent and resolution to reflect
the scales of landscape patchiness and habitat selection (Wiens,
2002; Hoffman and Wiens, 2004; Guisan and Thuiller, 2005; Nams
et al., 2006). Some types of models also include explicit spatial
parameters related to the focal organism that are assigned sep-
arately from the implied scale of the input data (e.g. Compton
et al., 2007). Predicting the presence of amphibians at breeding
ponds based upon upland habitat characteristics is a classic prob-
lem where researchers must decide on explicit spatial parameters.
In evaluating each pond, researchers could include upland habitat
characteristics within a radius described by population processes
such as migration, or researchers could look at larger radii described
by metapopulation processes such as dispersal (Semlitsch, 2008).
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There is little data available to guide researchers in making such a
choice between the scales of population and metapopulation pro-
cesses.

Vernal pools are widely distributed, abundant, are the sole habi-
tat of many organisms of conservation concern, and have long
been used by researchers as a model system to understand basic
ecological principles (Blaustein and Schwartz, 2001; Zedler, 2003;
Meester et al., 2005). Obligate vernal pool amphibians often domi-
nate these wetlands, migrating to the surrounding uplands during
the drier seasons. National and local wetland protection laws typ-
ically ignore the terrestrial life stages of semi-aquatic organisms,
but recent efforts have begun to reshape these laws to include ter-
restrial buffer zones encompassing upland habitat (Calhoun et al.,
2003; Burne and Griffin, 2005).

The migration distance of pond-breeding amphibians has been
suggested as a possible scale for effective terrestrial buffer zones
for wetlands. Semlitsch (1998) proposed a 164-m buffer that
would encompass 95% of a pond-breeding salamander popula-
tion, based upon direct movement studies. However, this distance
ignores metapopulation processes. Is this really the best scale for
conservation? If 164 m is a natural scale for salamander conser-
vation, then we should arrive at this same scale by asking the
question in a different way. What scale is best for predicting
current amphibian distributions in a network of vernal pools? If
population processes are most important in maintaining salaman-
ders on the landscape, then a model’s predictive ability should
be best when upland habitat is measured within approximately
164 m of each pond. The role of metapopulations in structur-
ing communities of amphibians and other organisms has been
debated in the literature (Marsh and Trenham, 2001; Freckleton
and Watkinson, 2002; Smith and Green, 2005). Resolving this
debate informs whether conservation must focus on large areas
with interconnected ponds or whether single-pond efforts may  be
effective.

Measuring landscape features at multiple scales simultaneously
is a common modeling strategy (Saab, 1999; Wang et al., 2001;
Guerry and Hunter, 2002; Homan et al., 2004; Herrmann et al.,
2005; Baldwin et al., 2006a; Cunningham et al., 2007; Clark et al.,
2008). In a recent resistant kernel model of pond-breeding sala-
mander habitat in Massachusetts, Compton et al. (2007) segregated
habitat connectivity measures at population, metapopulation, and
regional levels. The intent of this model is to prioritize areas for
conservation, but the question remains as to which of these scales
is most important in this task. When constructing such models,
the landscape is often evaluated with kernels of a few discrete
sizes that are selected a priori based upon direct movement stud-
ies, of which there are few. For instance, the local scale parameter
in the Compton et al. resistant kernel model was  based upon
one season of radio telemetry at a Rhode Island golf course and
one season of radio telemetry in Vermont. It is not clear that the
scales arrived at from such direct movement studies are really
the scales at which the models will best perform, and the pre-
dictive ability of a resistant kernel model has never been tested.
Herrmann et al. (2005) conducted an analysis over 7 scales between
100 m and 2000 m,  and found that the distributions of several
amphibians are well predicted by scales up to 1000 m,  much fur-
ther than the expected seasonal migration distance. However, that
study only incorporated 61 ponds, and thus had limited statistical
power.

In this paper, I examine a resistant kernel model as a represen-
tative case of a sophisticated predictive model built with little field
data (Compton et al., 2007). This model originally relied upon an
expert panel to score land cover types and incorporated explicit
spatial scale parameters. I combine data from previous studies of
spotted salamanders (A. maculatum)  and wood frogs (L. sylvati-
cus)  to conduct a statistically powerful analysis with 896 ponds to

determine the scale at which these amphibians respond to habitat
fragmentation. I then use a subset of these data to optimize the land
cover values in the resistant kernel model and evaluate the success
of the expert panel parameterization compared to a null model.

2. Methods

2.1. Data sets

For this study, I aimed to include as many vernal pool amphib-
ian studies as I could locate. The studies needed to include pond
locations and detection/non-detection of spotted salamanders and
wood frogs. I identified and contacted 16 primary investigators of
vernal pool research in the eastern United States, including authors
of at least seven data sets from published literature. Authors of
two of the recently published papers were unable to locate their
data. Through this effort, I was  able to obtain nine separate data
sets. After discarding data sets that did not have an effective sam-
ple size (defined as the smallest of the two  outcomes, detection or
non-detection) of at least 30 sites, and discarding data sets with
spatial overlap, I was  left with only five data sets. These included:
one in Rhode Island with 151 ponds (Egan and Paton, 2008), one
in suburban Boston with 105 ponds (Clark et al., 2008), one in the
Quabbin Reservation in central Massachusetts with 171 ponds (D.
Clark, Massachusetts Department of Conservation and Recreation,
unpublished data), one in the Connecticut River Watershed in cen-
tral Massachusetts with 103 ponds (Charney, 2011), and one in
the Housatonic River Watershed in western Massachusetts with
366 ponds (Charney, 2011). All of these areas except the Quabbin
Reservation contain a mix  of many land uses including residential,
industrial, forests, and fields. The Quabbin Reservation is com-
posed almost entirely of forests, timber cuts, and a large reservoir.
Aspects of survey methodology such as timing, intensity, and fre-
quency of visits, differed substantially between studies. All relied
upon diurnal visual and auditory surveys for some combination
of egg masses, spermatophores, larvae, and adults of the target
amphibians in the sampled ponds. While there is potential for high
observation errors that may  be correlated with pond character-
istics, detection rates within a region are unlikely to be affected
by characteristics of distant upland habitats (Grant et al., 2005).
Thus, these errors should be neutral with respect to my ques-
tions of landscape connectivity. I handle differences in detection
rates between data sets by treating each region separately in the
analyses.

2.2. Simple scale analysis

For all of the data sets I conducted scale analyses using a
simple model of percent forest cover within fixed radii circular
buffers centered on the focal ponds (Fig. 1). Forest cover serves
as necessary overwintering habitat for both spotted salamanders
and wood frogs in the region (Windmiller, 1996; Porej et al.,
2004; Regosin et al., 2005). I measured the percent canopy cover
using the 2001 National Land Cover Data canopy density layer
(www.epa.gov/mrlc). I conducted a single analysis for each species
with all of the data sets combined, as well as separate analyses on
each data set alone. In all models, detection of breeding amphibians
was used as the binary response variable, with forest cover as the
predictor variable in a logistic regression using the “glm” function
in the “stats” package of R Statistical Software (R development
core team, 2009). In the combined model, a categorical variable
distinguishing the data sets was  included as a covariate. This
variable was  included to account for differences between regions,
observers, or methods that would cause the overall detection rate
to differ between data sets. When the data sets were analyzed
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Fig. 1. Flow chart showing a simplified representation of two models used to score ponds based upon potential amphibian habitat in surrounding uplands. A hypothetical
landscape is depicted centered upon a single focal pond. Both methods begin with a GIS map  of land cover (a). In map  (a), forests are represented by black. The top row shows
the  Compton et al. (2007) resistant kernel model which relies upon expert opinion to assign resistant values to each land cover type (b). A Gaussian scale parameter is then
incorporated into the resistant kernel algorithm to calculate the least cost distance between the pond and each cell in the surrounding landscape (c). Cells that do not contain
forest  are set to zero (d) before summing the accessibility values across the landscape to generate a single local habitat score for each pond. The bottom row depicts a simple
circular  buffer model, which measures the amount of forest within a fixed distance of each pond (e and f). The predictive ability of each model was evaluated in the present
study  with logistic regression analysis. In this analysis, the pond scores produced by each model were used as the predictor variable, while the response was the outcome of
field  surveys for the presence of breeding amphibians at the focal ponds.

individually, I included latitude, longitude, and the interaction
term between latitude and longitude as covariates to account for
spatial autocorrelation. These spatial terms were used to reduce
the chance that the scale analysis would be biased towards larger
radii buffers that better capture simple coarse scale geographic
patterns such as climatic gradients that might also be driving
amphibian distributions. I varied the buffer radius at 50-m inter-
vals between 50 m and 20,000 m,  calculating the logistic regression
likelihood at each step, for a total of 400 different buffer sizes in
each model set. I generated a maximum likelihood estimate for the
best scale parameter, and a support interval defined as the highest
and lowest radii that produced models within two log-likelihood
units of the maximum likelihood (Edwards, 1992).

To see if I would arrive at smaller optimal scales with GIS
data sampled at finer resolutions, I also performed the anal-
ysis on 5-m resolution land cover data using the ponds from
the four Massachusetts datasets. I generated 5-m resolution land
cover data using the 0.5-m resolution forest cover layer from the
Massachusetts Office of Geographic and Environmental Informa-
tion (www.mass.gov/mgis). Rhode Island was excluded from this
analysis because the finer resolution data layer only covers Mas-
sachusetts. I performed the scale analysis with buffer radii ranging
from 10 m to 5000 m at 10 m intervals, for a total of 500 buffer sizes
in each model set. Computational limitations guided my  choice of
land cover pixel size and maximum buffer radii.

For the simple scale analysis, I designed a mapping-error model
to identify potential biases that could be introduced by a combi-
nation of noisy GIS data, pond location errors, and the fact that
larger buffer circles sample from a greater number of cells. In this
mapping-error model, I used the same GIS-based measures of forest
cover as the predictor variable, but I used forest cover as measured
on the ground during pond visits as the response. These data were
available only for the Connecticut River watershed and Housatonic
River watershed datasets. During field sampling in these regions,
the percent forest canopy cover within 30 m of the edge of each
pond was recorded. I converted this local forest cover into a binary
variable (greater or less than 50%) to fit my  logistic regression

model. The expectation is that GIS-based forest cover measured
in the smallest radii buffers should best predict local forest cover
at the pond, and models should get monotonically worse as buffers
increase. The best scale at which this mapping-error model per-
forms represents the minimum reliable scale for prediction using
the GIS data, independent of the amphibian distributions.

2.3. Resistant kernel optimization

To evaluate the Compton et al. (2007) local-connectivity resis-
tant kernel model, I examined three types of parameterizations:
models with the resistance values assigned by an expert panel,
null models with non-informative resistance values, and mod-
els where the resistance values were optimized to my data. For
both wood frogs and spotted salamanders, I optimized the resis-
tance values and scale parameter for the Compton et al. (2007)
local-connectivity resistant kernel model using the three Mas-
sachusetts data sets containing urbanized areas. This model relies
upon resistance values for movement of amphibians through each
land cover type, ranging from one to infinity, with one being min-
imal resistance. For a focal pond, the model calculates the least
cost distance between the pond and each cell in the surrounding
landscape (Fig. 1). Accessibility values for each cell on the land-
scape are then assigned using a Gaussian function of least cost
distance. The scale parameter sets the standard deviation of this
Gaussian function. The accessibility values of all cells with suitable
non-breeding habitat (forest) in the landscape are summed to cre-
ate a single local habitat connectivity score for the focal pond. In
the original parameterization, the authors set the scale parame-
ter to 124 m,  and assembled an expert panel of seven researchers
to assign resistance values to 24 land cover types. I did not opti-
mize the neighborhood level in the Compton et al. resistant kernel
model because during initial tests the neighborhood model per-
formed many orders of magnitude worse than the local model at
predicting my  data.

Land cover maps were generated at 30 m resolution from 2005
aerial photographs using the methods described by Compton et al.
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(2007).  I fixed the resistance of cells containing forest at one, and
varied the resistance of 23 other cover types used by Compton et al.
between one and 40, with 15 steps evenly spaced along a log scale.
Thus, the resistance values examined for each cover type on each
pass of the optimization procedure were: 1, 1.3, 1.7, 2.2, 2.9, 3.7, 4.8,
6.3, 8.2, 10.6, 13.8, 17.9, 23.3, 30.3, and 39.4. I also examined a null
model where all resistances were fixed at one. This null model is
nearly identical to the circular buffer model used in the simple scale
analysis, except that forest is weighted based on distance from the
center according to the Gaussian envelope. For the scale parameter,
I examined the following 16 values evenly spaced along a log scale:
100 m,  130 m,  170 m,  220 m,  290 m,  370 m,  480 m,  630 m,  820 m,
1060 m,  1380 m,  1790 m,  2330 m,  3030 m,  3940 m,  and 5120 m.

The Compton et al. (2007) resistant kernel model generates a
habitat score for every pond, and I used these scores in a logis-
tic regression to predict observations of breeding amphibians. The
Housatonic River Watershed, Connecticut River Watershed, and
Boston data sets were combined into a single statistical model by
incorporating a categorical variable with three levels, one for each
data set. Likelihood values were used to assess the fit of the model
for each parameterization.

Due to the complexity of the resistant kernel model, I sought
a simple optimization strategy that carried few assumptions and
one that could easily be tracked, paused, and restarted throughout
the procedure. I thus settled on a modified direct search of the like-
lihood space (Bolker, 2008), in which I iteratively optimized one
parameter at a time with a “square wheel” procedure developed
for R statistical software (Appendix A, R development core team,
2009). In this procedure, while all 15 step sizes were tried for a focal
parameter, the other parameters were held fixed. The focal param-
eter was then fixed to the maximum likelihood value, and the next
parameter was run. The procedure continued to rotate through all
of the parameters repeatedly until the parameter values no longer
changed.

While direct search methods carry few assumptions about the
geometry of the likelihood space, examining univariate slices in
a multiparameter optimization carries the potential for interac-
tions between the variables to mislead the procedure (Bolker,
2008). In tests, I found that for a given scale parameter, the start-
ing parameters had no effect on the output. This indicates that
the procedure consistently settles on a single global optimum and
is not misled by interactions among the land cover parameters.
However, if I allowed the scale parameter to vary along with the
other parameters, then the starting values influenced the out-
come. This is not surprising, given that the scale parameter only
has meaning relative to the resistance values; if I double both
the scale parameter and the resistance values, I will end up with
the exact same resistant kernel output. Therefore, I optimized the
resistance values separately for each of the scale steps, and then
constructed a likelihood curve for the scale parameter from these
parameterizations.

For model comparison, I defined support intervals as plus or
minus two log-likelihood units from the maximum likelihood
estimate (Edwards, 1992). For each parameter, I calculated the
influence as the difference in likelihood between the minimum and
maximum likelihood estimates obtained by changing that variable.
I also used the coefficient of variation in parameter estimates as a
measure of parameter stability.

The number of parameters in a resistant kernel model is based
on the number of land cover types mapped in the available GIS
layers. This cannot be changed without either generating new GIS
layers from scratch, or using expert opinion to collapse similar land
cover types. I did not have the capacity to do either of these. Thus,
the number of parameters remained fixed in all of the resistant
kernel models and simple likelihoods were sufficient for model
comparison.

3. Results

3.1. Simple scale analysis

For predicting spotted salamander distributions from forest
cover in concentric circles, the likelihood curve for the combined
data sets peaked at 1650 m (support interval: 1150–2150 m)  for
the 30-m resolution data. Using 5-m resolution data with the four
combined Massachusetts data sets, the likelihood curve for spotted
salamanders peaked at 2460 m (support interval: 1080–2870 m).
With wood frogs as the response variable, the model using 30-m
resolution data peaked at 1150 m (support interval: 800–1900 m)
and the model using 5-m resolution data peaked at 1670 m (support
interval: 710–5000 m).

Examining the data sets individually, clear likelihood peaks for
spotted salamanders are seen between the 1000 m to 3000 m radii
in the 30-m resolution models from the Connecticut River water-
shed, Housatonic River watershed, Quabbin Reservation and Boston
area (Fig. 2). The Rhode Island data optimal radius was not reached
until 9500 m.  For wood frogs using the 30-m resolution data, the
likelihood peaked at scale parameters between 700 m and 1500 m
for the three Massachusetts datasets, however it peaked at 250 m
for the Rhode Island dataset. In addition to the peak in likelihood at
larger scales for spotted salamanders, local maxima are also seen at
much smaller radii with the 5-m resolution data in the Connecticut
River watershed and the Quabbin Reservation. Wood frogs showed
small scale local maxima using the 5-m resolution land cover for
all data sets except the Quabbin Reservation. For the mapping-
error model predicting forest cover measured during pond visits,
the likelihood peaked within the first 100 m and decreased rapidly
and monotonically as the buffer radii increased for both land cover
resolutions, as expected.

3.2. Resistant kernel optimization

In the resistant kernel model, when land cover resistances were
allowed to vary, the best fit to the spotted salamander data was
achieved when the scale parameter was set to 3030 m (support
interval: 1380–3030 m; Fig. 3). For wood frogs, the best fit was
achieved at 1060 m (support interval: 290–3030 m). When land
cover resistance values were set to the expert panel values the max-
imum likelihood of the scale parameter for spotted salamanders
and wood frogs were 2330 m (support interval: 1380–3030 m)  and
480 m (support interval: 370–1060 m),  respectively. In nearly all
cases, the null model with all resistances set to one had a higher
likelihood than the expert panel model.

The land cover types that influenced the model fit the most
were vernal pool, non-forested wetland, minor street or road,
and unpaved road (Table 1). Optimized resistance values varied
across scales with a mean coefficient of variance for all param-
eters’ optimal resistance values of 0.8 (Appendix B). There was
very low correlation between mean optimized resistance values
and the resistance values as judged by the expert panel (Pearson’s
r = 0.3).

4. Discussion

The most interesting finding of this study is not the comparison
between the optimized and expert panel models, but the compar-
ison between the expert panel models and the null models. In this
analysis, the Compton et al. (2007) resistant kernel model demon-
strated a surprising failure of expert opinion. Not only did the expert
panel fail to improve the model, but experts made the model sig-
nificantly worse than the null model. In considering spatial scale,
few vernal pool studies include upland habitat at distances greater
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Fig. 2. Likelihood curves for buffer radius used to measure percent forest cover surrounding ponds. Better fitting models are lower on the y-axes. Percent forest sampled
at  two resolutions is used to predict detections of breeding spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus) at focal ponds in five study
regions. Solid vertical lines indicate the maximum likelihood estimate. Dashed vertical lines indicate the support interval within two log-likelihood units of the maximum
likelihood. For ease of viewing, I do not display the full extent of radii used in the model, but only the portions in which most features are expressed in all of the plots. In the
30-m  resolution Rhode Island data, the maximum likelihood for A. maculatum occurred above the maximum displayed scale, at 12,550 m. In the 5-m resolution Connecticut
River  watershed data, the maximum likelihood for A. maculatum occurred at 4300 m.

Fig. 3. Likelihood for 64 parameterizations of resistant kernel model in predicting spotted salamander (Ambystoma maculatum) and wood frog (Lithobates sylvaticus)  dis-
tributions at ponds in Massachusetts. Better fitting models are lower on the y-axes. Landcover resistances are set to the optimized values, values determined by an expert
panel,  or set to one in the null model. At almost every scale, the null model performs better than the expert panel model.
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Table 1
Resistance value ranks and influence of land cover types fit to amphibian breeding survey data averaged across 16 different values of the Compton et al. (2007) resistant
kernel  scale parameter, with standard deviations in parentheses.

Cover type Compton ranka Ambystoma maculatum Lithobates sylvaticus

Influenceb Optimized rankc Influence Optimized rank

Vernal pool 1 12 (11) 3.5 (4.6) 6(7) 9.2 (6.6)
Nonforested wetland 5 10 (4) 14.3 (6.7) 3.4(1.4) 15.6 (1)
Minor  street or road 12 9 (3) 8.9 (6.4) 4.8(1.4) 4.1 (4.9)
Unpaved road 8 6 (3) 2.1 (3) 3.7(1.2) 1.8 (3.3)
Powerline 6 4 (2) 4.8 (5.1) 2.5(0.8) 1(0)
Row  crop 14 4 (3) 1(0) 2.5(0.6) 3.5 (4.6)
Stream: 1st order 3 3 (1.3) 1.8 (3.3) 2(1.2) 6 (5.9)
Major highway 21 3 (1.5) 9.6 (7) 1.1(1.3) 14.9 (1.2)
Pasture 13 2.3 (1) 1(0) 1.6(0.5) 4.1 (4.8)
Low-density residential 10 2 (1) 10 (8.2) 2.4(1) 1(0)
Old  field 7 2 (1.2) 4.1 (6) 1.4(0.3) 2.1 (3)
Pond/lake 19 1.5 (1) 5.4 (7.9) 1.5(0.9) 18.5 (2)
Major  road 18 1.3 (0.6) 14.7 (1.8) 0.7(0.4) 14.7 (2.2)
Stream: 4th order 22 1.2 (1.1) 19.9 (5.3) 1.3(0.7) 18.7 (2.7)
Stream: 2nd order 4 1.2 (1) 19 (7.3) 0.7(0.6) 14.3 (7.5)
Railroad 17 1 (0.5) 3.4 (6.5) 1(0.4) 2.4 (3.8)
Expressway 23 0.9 (1.2) 5.3 (7.1) 0.5(0.5) 2.1 (2.9)
Stream: 3rd order 15 0.9 (0.5) 19.6 (2.1) 0.6(0.3) 14.9 (5.1)
Urban  20 0.8 (0.6) 20.8 (1.4) 1(1) 17.9 (2.7)
High-density residential 15 0.6 (0.3) 21.8 (0.8) 0.6(0.2) 18.6 (5.2)
Orchard 9 0.5 (0.5) 11.9 (5.6) 0.2(0.2) 10.3 (9.1)
Nursery 10 0.2 (0.1) 20.8 (2.6) 0.22(0.16) 17.8 (2.1)
Salt  marsh 23 0.03 (0.02) 20.7 (1.9) 0.02(0.03) 17.3 (1.9)
Forest  1 Fixed 1 Fixed 1
Missing data 1 Fixed 1 Fixed 1

a Focal land cover resistance rank, relative to all land covers as assigned by expert panel in Compton et al. (2007).
b Maximum change in log-likelihood exerted by focal land cover, averaged over all parameterizations, with standard deviations in parentheses. Because the number of

parameters stays fixed in the models, change in log-likelihood is directly proportionate to change in log-likelihood.
c Focal land cover resistance rank, relative to all land covers in the best fitting parameterization optimized to my data.

than 1000 m.  Yet, in most cases the models in this study performed
best at even larger scales.

4.1. Simple scale analysis

The distributions of spotted salamanders in the datasets were
best predicted by measuring land cover at distances between
approximately 1000 m and 3000 m from breeding ponds. These
scales are consistent with the findings of previous studies with sim-
ilar methods (e.g. Herrmann et al., 2005; Egan and Paton, 2008),
but are substantially larger than the scales of wetland protection
laws, the “life zone” encompassing 95% of a salamander popula-
tion, the scale parameter originally used to parameterize the local
resistant kernel model, and the neighborhood scale of the Comp-
ton et al. resistant kernel model (Griffin, 1989; Semlitsch, 1998;
Compton et al., 2007). One explanation for the difference is that the
life zone scale reflects population-level processes, while this study
may  reflect larger scale metapopulation-level processes. Both the
life zone concept and original local resistant kernel parameteriza-
tion are based on annual salamander migration distances. Habitat
characteristics within the migration distance of breeding ponds
should influence adult survival and thus predict population growth
parameters. The models in this study were not based on popula-
tion size, but rather they were based on the presence of detectable
populations which depends in part on colonization rates. The pres-
ence of salamanders at a focal pond may  indicate that the pond
is surrounded by a large enough area of good habitat to encom-
pass a functioning metapopulation. Such a network of connected
ponds allows recolonization events to compensate for extinction
events ensuring the long term persistence of salamanders in the
area. The scale at which landscape characteristics influence colo-
nization ought to be determined by dispersal distance. Dispersal
distances as calculated through individual movement studies and
genetic analyses on pond breeding amphibians are closer to the
range of the optimal scales found in this study (Semlitsch, 2008).

In most cases, wood frog detections were best predicted by
measuring land cover at smaller radii than spotted salamanders.
Dispersal studies do not suggest that wood frog dispersal dis-
tances are any smaller than spotted salamander dispersal distances
(Semlitsch, 2008). In fact, because frogs are able to hop over obsta-
cles and use con-specific vocalizations to locate ponds, one might
expect wood frogs to be better at colonizing isolated ponds in a
fragmented landscape than spotted salamanders (Smith and Green,
2005).

Perhaps the high vagility of wood frogs means that very few
ponds in these landscapes are sufficiently isolated to prevent colo-
nization. If ponds are so close to each other that they all receive
many dispersing juveniles every year, then the distribution of
breeding populations would not be explained by metapopulation
processes (Marsh and Trenham, 2001; Smith and Green, 2005).
Instead, the availability of upland habitat within the adult migra-
tion distance of ponds might be a better predictor of presence of a
detectable breeding population. Indeed, compared to spotted sala-
manders, the scales that worked best for wood frogs are a bit closer
to what we  would expect their migration distance to be (Baldwin
et al., 2006b). In addition, in the 5-m scale analysis wood frogs
showed a more substantial small-scale peak than spotted salaman-
ders for three of the four data sets examined.

4.2. Resistant kernel optimization

Despite the sophistication of the Compton et al. (2007) resistant
kernel algorithm, when the expert panel resistances were used, the
model was outperformed by my  simple model that measures only
percent forest area surrounding ponds. Compared to the resistant
kernel model as originally parameterized, a higher likelihood was
attained by the optimized simple circular buffer model in all three
regions for both amphibian species. The likelihood of the resistant
kernel null model parameterization was also higher than the expert
panel parameterization at almost all scales. There are four scales



Author's personal copy

N.D. Charney / Ecological Modelling 242 (2012) 37– 45 43

for spotted salamanders at which the expert panel likelihood was
greater, and these are explained by the fact that peaks of the likeli-
hood curves occur at different scales in the two  models. A smaller
scale peak was  expected in the null model because the resistances
are minimized and therefore the effective kernel volume is larger
for a given scale. The fact that the optimized model was many log-
likelihood units greater than the other models demonstrates that,
if parameterized correctly, the resistant kernel model can offer a
much better fit to the data than the simple model. The expert panel
parameterization, however, resulted in a worse fit.

The failure of the expert panel in the case of this study does
not imply that expert opinion is never useful in ecological model-
ing. It is well understood that the methods used to elicit, combine,
and employ expert opinion can dramatically impact the reliabil-
ity of the expert-derived values (Ayyub, 2001). To parameterize
the original model, Compton et al. (2007) elicited independent
opinions from seven experts. For each land cover type, a trimmed
mean of the resistance value was calculated by dropping the mini-
mum and maximum assigned values before averaging. It is possible
that a consensus-seeking elicitation technique, such as the Delphi
method (Hsu and Sandford, 2007) would have produced a better
set of resistance values. It is also possible that the task of assign-
ing meaningful resistance values in such a complex model is too
difficult. The values provided by the expert panel may be a very
good reflection of the relative quality of each habitat type, however
these values may  be quite different from the non-intuitive resis-
tance values that a resistant kernel model relies upon. I employed
a very basic form of expert opinion in the simple circular models
by equating forest with non-breeding habitat. Perhaps there is an
ideal level of expert input that is intermediate between the com-
plexity of a resistant kernel model and the simplicity of my  circular
model.

The optimization procedure produced parameter values sub-
stantially different from those of the expert panel. The relative
optimized resistance values for land covers including row crops,
pasture, and all types of roads were much lower than their expert
panel values for both amphibian species. Other land covers, includ-
ing non-forested wetlands, second order streams, and vernal pools
had higher optimized resistances than expected. Inconsistencies
in the land cover resistances may  in part reflect the inability of a
single parameter to capture the myriad types of direct and indi-
rect impacts that land uses can have on the various amphibian life
stages.

While the expert panel parameterization did not offer an
improvement over the null model, I also have little trust in the
parameter values obtained by the optimization procedure. Of
particular concern are the high variances in the parameter val-
ues across scales, suggesting instability in the optimized values
(Table 1). Due to sample size limitations and processor constraints,
I did not include a hold-out dataset to test the optimized model
against. To optimize the model for wood frogs alone took approx-
imately 1300 core-hours. I did not have sufficient resources to
perform both full optimizations as well as partial optimizations
on subsetted data. Perhaps the sample size is too low to appro-
priately optimize this model. Yet, in light of my  efforts to track
down all useable data sets, I feel that a study of much greater mag-
nitude is unlikely to occur soon. This is a large sample compared to
other pond breeding amphibian studies. With 574 ponds, a pres-
ence/absence ratio of 0.99 and 0.98 and 23 land cover types, there
are still more than 12 times as many samples as land cover types.
For future study, it would be insightful to generate multiple GIS
maps with variable levels of differentiation between land cover
types. The models could then be run with varying numbers of input
resistance values to determine how many are necessary.

The optimization procedure allows an objective way  to com-
pare the impact of multiple land cover types on amphibians using

observed data, which may  ultimately help steer conservation regu-
lations. However, given the potential unreliability of the resistance
estimates, the optimized values should be used very cautiously if at
all. Even if the optimized values are correct within the model con-
text, because resistance is a non-intuitive concept, it is not clear
how to translate these values into a form that is useful for con-
servation. The resistant kernel approach is still new and there is
still much work to be done on understanding how to appropriately
parameterize and employ it.

Arguably, this study was  an unfair test of a resistant kernel
model. To begin, one might think that the neighborhood model
developed by Compton et al. (2007) would be better suited to
predicting population presence. Yet, I discarded the neighborhood
model early on because it performed orders of magnitude worse
than the local model. This implies that, while a metapopulation
scale may  be the best scale for prediction, the structure of the local
resistant kernel model outperforms the structure of the neighbor-
hood model. Part of this could be explained by the fact that the
neighborhood model relies upon good knowledge of the distribu-
tion of ponds on the landscape, yet the available data on pond
distributions is very incomplete. A second consideration is that the
Compton et al. (2007) resistant kernel model was not intended to
predict the results of recent detection/non-detection surveys for
amphibians, but rather to assess potential long term future viabil-
ity of the populations. Perhaps it would have been better to use
older land cover data in predicting the current amphibian distri-
butions to allow population time lags to take effect. However, the
model need only gauge the quality of most ponds relative to each
other. While human densities and land use activities have changed
over the past century, the ponds that were in the most fragmented
habitats in the recent past are likely to be the ponds in the most
fragmented habitats today and in the future. For example, the den-
sity of roads within 1000 m of my  focal ponds in 1830 (Hall et al.,
2002) is a good predictor of the density of roads within 1000 m of
the ponds in 2000 (www.MassGIS.gov). While the time lag effect
may  partially explain overall poor model performance, this does not
explain the fact that the resistant kernel performed so much worse
than the null model. The null model began with the same handi-
capped GIS data, but incorporated 24 fewer variables. If a resistant
kernel model is to be relied upon for conservation planning, I would
expect it to at least outperform the null model.

5. Conclusions

Echoing the sentiment of Ockham’s razor, in the absence of data,
simple models with few parameters may  be preferable to com-
plex models parameterized by expert opinion (Starfield, 1997). This
study offers a cautionary lesson against the growing role of expert
opinion in ecological models. In the case of amphibians, accurately
predicting the influence of many different land use types on popu-
lations may  be prohibitively complex given our current resources.
While I have parameterized the resistance values for the data in
this study, perhaps other researchers would arrive at substantially
different values in other areas, or using other response variables
such as genetic distance. Few studies have examined the relative
impacts of the various land cover types on amphibians, which is
why the expert panel was  convened. However, numerous stud-
ies have demonstrated that spotted salamanders and wood frogs
in this region need upland forest habitat. To identify target ponds
for conservation I would recommend simple models based on this
one known parameter, such as the simple circular buffer model
used in the scale analysis in this paper, rather than opting for
complexity.

To be effective, any model and any long-term conservation
initiative requires application at the appropriate spatial scales.
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The relative importance of population scale versus metapopula-
tion scale influences may  vary from species to species, and more
work is needed to describe this balance. This study suggests that
maintaining vernal pool assemblages is best done by coordinating
conservation efforts over fairly large scales, up to 1–3 km radius
areas. Pursuing conservation of amphibians through small scale
actions such as wetland buffer zones might protect populations
in the short term, but may  not allow for colonization events that
are important for species such as spotted salamanders in the long
term.
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